Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
ACS Appl Mater Interfaces ; 14(4): 4882-4891, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1649372

ABSTRACT

Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is seriously threatening human health. Following SARS-CoV-2 infection, immune cell infiltration creates an inflammatory and oxidative microenvironment, which can cause pneumonia, severe acute respiratory syndrome, kidney failure, and even death. Clinically, a safe and effective treatment strategy remains to be established. Herein, a nano-bait strategy for inhibition of SARS-CoV-2 infection by redirecting viral attack while simultaneously relieving inflammation is developed. Specifically, the nano-bait was based on the exosome-sheathed polydopamine (PDA@Exosome) nanoparticles, which were generated by exocytosis of the PDA nanoparticles from H293T cells. In this approach, PDA@Exosome inherits from the source cells of H293T cells a surface display of ACE2 through pre-engineered expression. The resulting PDA@Exosome can compete with ACE2-expressing epithelial cells for S protein binding, in either the pre-exposure or post-exposure route. Moreover, relying on the ability of PDA to intercept and deactivate radical species, the PDA@Exosome can significantly attenuate the level of inflammatory cytokines by mediating oxidative stress, a major cause of organ injury. Due to its high trapping, multiple antioxidant ability, and good biocompatibility, the HACE2-exosome based nano-bait is a promising robust antiviral nanotherapeutics for the ongoing COVID-19 pandemic.


Subject(s)
Antioxidants/pharmacology , COVID-19 Drug Treatment , Pandemics , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Cytokines/genetics , Epithelial Cells/drug effects , Epithelial Cells/virology , Exosomes/drug effects , Exosomes/genetics , Humans , SARS-CoV-2/pathogenicity , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL